
Primal-Dual Algorithm for Facility Location1

• The Facility Location Problem. In the (uncapacitated) facility location (UFL) problem, we are given
a set F of facilities, a set C of clients, and connection costs d(i, j) for i ∈ F and j ∈ C which
measures the “distance” between i and j. Each facility i ∈ F has an opening cost fi. The objective
is to open X ⊆ F and connect clients via assignment σ : C → X to the nearest open facility, to
minimize

cost(X) =
∑
i∈X

fi +
∑
j∈C

d(σ(j), j)

We assume that the distances form a metric, that is, satisfy triangle inequality

d(i, j) ≤ d(i, j′) + d(j′, i′) + d(i′, j), ∀i, i′ ∈ F, j, j′ ∈ C

then the problem is called the metric UFL. In this lecture, we will see an influential primal-dual
3-approximation algorithm. We begin by writing these two LPs.

• The Primal LP Relaxation and its Dual.

min
∑
i∈F

fiyi +
∑

i∈F,j∈C
d(i, j)xij (UFL-P)

∑
i∈F

xij ≥ 1, ∀j ∈ C (1)

yi − xij ≥ 0, ∀i ∈ F, ∀j ∈ C (2)

xij , yi ≥ 0, ∀i ∈ F, ∀j ∈ C (3)

max
∑
j∈C

αj (UFL-D)

∑
j∈C

βij ≤ fi, ∀i ∈ F (4)

αj − βij ≤ d(i, j), ∀i ∈ F, ∀j ∈ C (5)

αj , βij ≥ 0, ∀i ∈ F, ∀j ∈ C (6)

The primal has two kinds of variables: yi indicating if i is open and xij indicating if client j is
connected to facility i. (1) captures the fact that every client must be connected to some facility. (2)
captures the fact that no client can connect to a facility unless the latter is opened.

For each constraint of the primal, there is a dual variable. There are variables αj’s for each j ∈ C,
corresponding to primal constraint (1). There are variables βij for all facility-client pairs, correspond-
ing to primal constraint (2). One should think of αj as a “charge” on the client j, and the βij’s as a
“charge bump” on facility-client pair (i, j).

The dual objective is to maximize the total charge, that is,
∑

j∈C αj . There are two kinds of constraints
corresponding to the two kinds of variables, xij and yi, in the primal. Constraint (5) bounds the
charge αj on any client j; for any facility i, αj is at most the distance to d(i, j) to the facility plus the
charge bump βij for this pair (i, j). Thus the charge bumps can be used to raise αj’s. However, the
constraint (4) puts an upper bound on the charge bumps: for any facility i, the total charge bumps it
participates in, that is

∑
j∈C βij is at most the facility opening cost fi.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 4th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1



• The Primal Dual Schema for UFL. To recall the Primal-Dual schema, we wish to design an algorithm
which solves the UFL problem along with finding (and, in fact, guided by) a feasible solution (α, β)
to (UFL-D). We analyze the performance of the UFL solution by comparing it with the dual solution
we constructed. Intuitively, we would like (a) to open facility i if and only if fi =

∑
j βij , and (b)

connect client j to facility i iff αj = d(i, j) + βij . Furthermore, we would also like (c) βij > 0 to
imply j connects to i. It is not too hard to see if we achieved all three of these properties, we would
in fact have an exact solution, and this is too much to hope for since UFL is an NP-hard problem.
What we show below is how to obtain (a), (c), but condition (b) for only a subset of the clients; for
the remaining clients, we argue about their connection costs using triangle inequality.

Initially, all αj’s and βij’s are 0. We maintain a set of active clients A, which is initialized to the
set of all clients C. We raise the αj’s for active clients at a uniform rate. At some point of time, we
have αj = d(i, j) for some facility-client pair (i, j). At this point, we raise the “charge bump” βij
for this pair also at the same rate. We call a pair (i, j) tight if αj = d(i, j) + βij , and we say this
client j “feeds” the facility i. We also maintain a set X of (tentatively) open facilities initialized to
∅. A facility i enters X iff

∑
j βij = fi. Once a facility enters X , all clients that were “feeding” this

facility are deemed inactive, and are tentatively connected to this facility i via a map σ. The above is
done till all clients are inactive and thus assigned to some tentatively open facility. This completes the
first stage of the algorithm.

1: procedure UFL PRIMAL-DUAL STAGE I(UFL instance I):
2: αj ← 0 for all j ∈ C; βij ← 0 for all i ∈ F, j ∈ C.
3: A← C; X ← ∅; Π← ∅ . Π will denote the set of tight pairs.
4: while A 6= ∅ do:
5: For each j ∈ A and each (i, j) ∈ Π increase αj and βij , respectively, at a uniform

rate till one of the following occurs.

a. A new pair (i, j) becomes tight, that is αj = d(i, j). In that case,

– Π← Π + (i, j).
– If i ∈ X , σ(j)← i and A← A \ {j}

. If i was already open, the client j is assigned to this facility. If not, βij will grow for this
pair.

b. For some i ∈ F \X ,
∑

j∈C βij = fi. In that case,

– For all j ∈ A with (i, j) ∈ Π, A← A \ {j} and σ(j)← i.

. A new facility is open, and all active clients feeding it are assigned to it.

6: return (X,σ).

• A few invariants about the above algorithm are to be noted.

– Whenever a client j leaves A, it is assigned to σ(j) ∈ X . Furthermore, (σ(j), j) ∈ Π implying
d(σ(j), j) = αj − βij .

– Whenever a facility i is added to X , we have
∑

j∈C βij = fi.

2



It is instructive to try and analyze the cost of the above algorithm and compare it to the total dual
obtained. Note that the cost of the solution is

cost(X) =
∑
i∈X

fi +
∑
j∈C

d(σ(j), j) =
∑
i∈X

∑
j∈C

βij +
∑
j∈C

(
αj − βσ(j),j

)
The second summation contains

∑
j∈C αj which is what we would like to compare with. Indeed, we

could rewrite the RHS as

cost(X) =
∑
j∈C

αj +
∑
i∈X

∑
j∈C

βij −
∑

j∈C:σ(j)=i

βij


The second parenthesis is the reason we can’t compare cost(X) directly with

∑
j∈C αj . To see this,

it is useful to imagine a scenario where this second parenthesis vanishes: this occurs if βij > 0 implies
σ(j) = i. Unfortunately, this condition is not satisfied by the Stage I algorithm; there could be many
clients j ∈ C with βij > 0 who are not not be assigned to i. This can occur if some other i′ ∈ X was
opened before i, and j was assigned to that facility. In turn, the second parenthesis term may become
much larger than the

∑
j∈C αj’s.

Exercise: Indeed, come up with an example where this actually occurs.

To allay this, the second stage of the algorithm makes sure that an open facility is paid for only by
clients which are assigned to it. And this brings us to the second idea in this primal-dual algorithm.

• Facility Graph and Independent Sets. Recall, X is the set of facilities tentatively opened by the
above algorithm, and each client j ∈ C is part of at least one tight pair (i, j) with i ∈ X . In particular,
i = σ(j) is one such facility, but there can be multiple such i’s. Construct a graph G(X,E) over the
tentatively open facilities, where there is an edge (i, i′) ∈ E iff there is a client j with βij > 0 and
βi′j > 0, that is, the same client “fed” both facilities. Let I be any maximal independent set in the
graph. The final algorithm is : open I .

1: procedure UFL PRIMAL-DUAL STAGE II(X,α, β from Stage I):
2: Construct graph G = (X,E) where (i, i′) ∈ E if and only if there exists j ∈ C with
βij > 0 and βi′j > 0.

3: Final any maximal independent set I in G.
4: return I as the final set of facilities opened.

• Analysis. Every client j would connect to their closest facility in I . We prove an upper bound to this
connection cost by describing a potentially sub-optimal assignment σ : C → I as follows.

For each facility i ∈ X , let Γ(i) := {j : (i, j) ∈ Π} be the tight pairs incident on i. For any set
T ⊆ X , Γ(T ) =

⋃
i∈T Γ(i). So, Γ(T ) is the set of clients which can be connected to some facility

in T via a tight pair. Now, if a client j can be connected so to a facility in I , that is if j ∈ Γ(I),
then set σ(j) ← i where i ∈ I is such that (i, j) is tight and βij > 0. Note that by definition of the
independent set, there can be at most one such i ∈ I . If βij = 0 for all i ∈ I , then arbitrarily pick any
i such that (i, j) ∈ Π.

3



For clients j ∈ C\Γ(I), consider i ∈ X\I to be the facility with (i, j) ∈ Π to which j was tentatively
assigned to in Stage I. Since i is not in I , there must exist an edge (i′, i) in G(X,E). That is, there
must exist a client j′ ∈ Γ(i′) such that βij′ > 0 and βi′j′ > 0. Assign the client j to i′ ∈ I , that is,
σ(j)← i′. This completes the description of σ.

We prove the following theorem which, in particular, proves that the algorithm is a 3-approximation
algorithm.

Theorem 1. cost(I) ≤
∑

j∈C d(j, σ(j)) + 3
∑

i∈I fi ≤ 3
∑

j∈C αj

Proof. As before, we can argue about the facility opening costs as∑
i∈I

fi =
∑
i∈I

∑
j∈Γ(i)

βij =︸︷︷︸
exchanging summations

∑
j∈Γ(I)

∑
i∈I:βij>0

βij

Now, as mentioned above, since I is an independent set, for all j ∈ Γ(I) we can have βij > 0 for at
most one i ∈ I , and if so, that i is precisely σ(j). Therefore, we can simplify the RHS of the above
equation to get ∑

i∈I
fi =

∑
j∈Γ(I)

βσ(j),j =︸︷︷︸
(σ(j),j) is tight

∑
j∈Γ(I)

(αj − d(σ(j), j)) (7)

We can now argue about the connection cost of the, possibly sub-optimal, assignment σ.∑
j∈C

d(j, σ(j)) =
∑
j∈Γ(I)

d(j, σ(j)) +
∑

j∈C\Γ(I)

d(j, σ(j)) (8)

Note that the first term in the RHS of (8) precisely gets canceled by the negative term in the RHS of
(7). Putting them together, we get∑

i∈I
fi +

∑
j∈C

d(j, σ(j)) =
∑
j∈Γ(I)

αj +
∑

j∈C\Γ(I)

d(j, σ(j)) (9)

Now we prove the following lemma which uses triangle inequality.

Lemma 1. For every j ∈ C \ Γ(I), d(j, σ(j)) ≤ 3αj .

The proof of the theorem now follows easily from (7), (8), and Lemma 1. Indeed, one gets something
potentially stronger by multiplying (7) by 3, adding it to (8), and then applying Lemma 1.

3
∑
i∈I

fi +
∑
j∈C

d(j, σ(j)) ≤ 3
∑
j∈Γ(I)

αj + 3
∑

j∈C\Γ(I)

αj︸ ︷︷ ︸
=3

∑
j∈C αj

− 2
∑
j∈Γ(I)

d(j, σ(j))

4



• Proof of Lemma 1. Fix a client j ∈ C \ Γ(I), and let’s recall what σ(j) is. We pick i ∈ X \ I to be
the facility with (i, j) ∈ Π to which j was tentatively assigned to in Stage I. Since i is not in I , there
must exist facility i′ ∈ I and j′ ∈ Γ(i′) such that βij′ > 0 and βi′j′ > 0. We then assign σ(j) to be
i′ ∈ I .

We now use triangle inequality to assert

d(σ(j), j) = d(i′, j) ≤ d(i, j) + d(i, j′) + d(j′, i′) ≤ αj + 2αj′ (10)

where we have used the fact that (i, j), (i, j′) and (i′, j′) are in Π to get the second inequality.

Now, what do we know about αj and αj′? αj stopped growing when j was deemed inactive. This
occurs in Line 5(a) or (b), but note that at that time j is tentatively assigned to i. This must occur
after or at the same time i was declared tentatively open (ie, added to X); if Line 5(a) it’s the former,
if Line 5(b) it’s the latter. Let’s call this “opening time” of i to be ti, and we have argued αj ≥ ti.
Now, since βij′ > 0, (i, j′) was already tight at the time i was declared tentatively open, that is ti.
Therefore, j′ must be deemed inactive at least by this time; if it’s still active at time ti then it will be
deemed inactive at that iteration. This implies αj′ ≤ ti, and therefore, αj′ ≤ αj . Substituting in (10),
we obtain the proof of the lemma.

Notes

The algorithm described here is from the paper [2] by Jain and Vazirani. The fact that the algorithm’s cost is
at most 3lp even when the facility opening costs are multiplied by factor 3 is extremely useful in designing
algorithms for the k-median problem. In the same paper [2], Jain and Vazirani showed how such algorithms
can be used to design approximation algorithms for the k-median problem with a hit of factor 2. This style
has been further refined in the paper [3] and [1] to get the best-known approximations for the k-median
problem.

5



References

[1] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. An improved approximation for k-median,
and positive correlation in budgeted optimization. In Proc., ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 737–756, 2014.

[2] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location and k-median problems
using the primal-dual schema and Lagrangean relaxation. Journal of the ACM, 48(2):274–296, 2001.

[3] S. Li and O. Svensson. Approximating k-median via pseudo-approximation. SIAM Journal on Com-
puting (SICOMP), 45(2):530–547, 2016.

6


